
Using Intel OpenMP Thread Affinity for Pinning
Category: Process Pinning

Columbia Phase Out:

As of Feb. 8, 2013, the Columbia21 node has been taken offline as part of the Columbia
phase out process. Columbia22-24 are still available. If your script requires a specific node,
please make the appropriate changes in order to ensure the success of your job.

Summary: The Intel compiler's OpenMP runtime library has the ability to bind OpenMP
threads to physical processing units. Depending on the system (machine) topology,
application, and operating system, thread affinity can have a dramatic effect on the code
performance. For most OpenMP codes, type=scatter would provide the best
performance, as it minimizes cache and memory bandwidth contention for Nehalem-EP,
Westmere, and Sandy Bridge. For Harpertown, using an explicit proclist should give the
best performance.

Recommended Approaches

Two approaches are recommended for using the Intel OpenMP thread affinity capability:

Use the KMP_AFFINITY Environment Variable

The thread affinity interface is controlled using the KMP_AFFINITY environment variable.

Syntax

For csh and tcsh:

setenv KMP_AFFINITY [<modifier>,...]<type>[,<permute>][,<offset>]
For sh, bash,and ksh:

export KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]

Use the Compiler Flag -par-affinity Compiler Option

Starting with the Intel compiler version 11.1, thread affinity can also be specified through

Using Intel OpenMP Thread Affinity for Pinning 1

http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html
http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html
http://www.nas.nasa.gov/hecc/support/kb/Remote-File-Transfer-Commands_142.html

the compiler option -par-affinity. The use of -openmp or -parallel is required in
order for this option to take effect. This option overrides the environment variable when both
are specified. See man ifort for more information.

Syntax

-par-affinity=[<modifier>,...]<type>[,<permute>][,<offset>]
For both of these approaches, type is the only required argument, and it indicates the type
of thread affinity to use. Descriptions of the arguments (type, modifier, permute, and
offset) can be found on Intel's Thread Affinity Interface web page.

Note: Intel compiler versions 11.1 and later are recommended, as some of the affinity
methods described below are not supported in earlier versions.

Possible Values of type

Possible values for type are:

type = none (default)

Does not bind OpenMP threads to particular thread contexts; however, if the operating
system supports affinity, the compiler still uses the OpenMP thread affinity interface to
determine machine topology. Specify KMP_AFFINITY=verbose,none to list a machine
topology map.

type = disabled

Specifying disabled completely disables the thread affinity interfaces. This forces the
OpenMP runtime library to behave as if the affinity interface was not supported by the
operating system. This includes implementations of the low-level API interfaces such as
kmp_set_affinity and kmp_get_affinity that have no effect and will return a
nonzero error code.

Additional information from Intel:

"The thread affinity type of KMP_AFFINITY environment variable defaults to none
(KMP_AFFINITY=none). The behavior for KMP_AFFINITY=none was changed in 10.1.015
or later, and in all 11.x compilers, such that the initialization thread creates a "full mask" of
all the threads on the machine, and every thread binds to this mask at startup time. It was
subsequently found that this change may interfere with other platform affinity mechanism,
for example, dplace() on SGI Altix machines. To resolve this issue, a new affinity type
disabled was introduced in compiler 10.1.018, and in all 11.x compilers

Category: Process Pinning 2

http://software.intel.com/sites/products/documentation/studio/composer/en-us/2011Update/compiler_c/optaps/common/optaps_openmp_thread_affinity.htm

(KMP_AFFINITY=disabled). Setting KMP_AFFINITY=disabled will prevent the runtime
library from making any affinity-related system calls."

type = compact

Specifying compact causes the threads to be placed as close together as possible. For
example, in a topology map, the nearer a core is to the root, the more significance the core
has when sorting the threads.

Usage example:

for sh, ksh, bash
export KMP_AFFINITY=compact,verbose

for csh, tcsh
setenv KMP_AFFINITY compact,verbose

type = scatter

Specifying scatter distributes the threads as evenly as possible across the entire system.
Scatter is the opposite of compact.

Usage example:

for sh, ksh, bash
export KMP_AFFINITY=scatter,verbose

for csh, tcsh
setenv KMP_AFFINITY scatter,verbose

type = explicit

Specifying explicit assigns OpenMP threads to a list of OS proc IDs that have been
explicitly specified by using the proclist= modifier, which is required for this affinity type.

Usage example:

for sh, ksh, bash
export KMP_AFFINITY="explicit,proclist=[0,1,4,5],verbose"

for csh, tcsh
setenv KMP_AFFINITY "explicit,proclist=[0,1,4,5],verbose"

Category: Process Pinning 3

For nodes that support hyper-threading (such as Nehalem-EP, Westmere, and Sandy Br),
you can use the granularity modifier to choose whether to pin OpenMP threads to
physical cores using granularity=core (the default) or pin to logical cores using
granularity=fine or granularity=thread for the compact and scatter types.

For most OpenMP codes, type=scatter should provide the best performance, as it
minimizes cache and memory bandwidth contention for Nehalem-EP, Westmere, and
Sandy Bridge nodes. For Harpertown nodes, using an explicit proclist should give the
best performance.

Examples

The following examples illustrate the thread placement of an OpenMP job with four threads
on various platforms with different thread affinity methods. The variable
OMP_NUM_THREADS is set to 4:

for sh, ksh, bash
export OMP_NUM_THREADS=4

for csh, tcsh
setenv OMP_NUM_THREADS 4

The use of the verbose modifier is recommended, as it provides an output with the
placement.

Harpertown

Note that every two cores (indicated with same color) in Harpertown share L2 cache.

Four threads running on one node (eight physical cores) of Harpertown will get the
following thread placement:

setting of KMP_AFFINITY Processor id 0 2 4 6 1 3 5 7
compact,verbose thread id 0 1 2 3
scatter,verbose thread id 0 2 1 3
"explicit,proclist=[0,1,4,5],verbose" thread id 0 2 1 3

Nehalem-EP

Note that four physical cores (indicated with same color) in Nehalem-EP share the same L3
cache.

Four threads running on one node (eight physical cores and 16 logical cores due to
hyper-threading) of Nehalem-EP will get the following thread placement:

Category: Process Pinning 4

setting of KMP_AFFINITY Processor id 0,8 1,9 2,10 3,11 4,12 5,13 6,14 7,15
granularity=core,compact,verbose thread id 0,1 2,3
granularity=core,scatter,verbose thread id 0 2 1 3
"explicit,proclist=[0,2,4,6],verbose" thread id 0 1 2 3
Note that with granularity=core, an OpenMP thread is pinned to a physical core, and is
allowed to float between the two logical cores associated with the physical core. For
example, with granularity=core,compact, both threads 0 and 1 are pinned to the
logical core set {0,8}. If you use granularity=fine,compact instead, thread 0 is pinned
to logical core 0 and thread 1 is pinned to logical core 8, respectively.

Westmere

Note that six physical cores (indicated with same color) in Westmere share the same L3
cache.

Four threads running on 1 node (12 physical cores and 24 logical cores due to
hyper-threading) of Westmere will get the following thread placement:

setting of KMP_AFFINITY Processor
id 0,121,132,143,154,165,176,187,198,209,2110,2211,23

granularity=core,compact,verbose thread id 0,1 2,3
granularity=core,scatter,verbose thread id 0 2 1 3
"explicit,proclist=[0,3,6,9],verbose"thread id 0 1 2 3

Sandy Bridge

As seen in the configuration diagram of a Sandy Bridge node, each set of eight physical
cores in a socket share the same L3 cache.

Four threads running on 1 node (16 physical cores and 32 logical cores due to
hyper-threading) of Sandy Bridge will get the following thread placement:

Columbia

Each Columbia host has hundreds of cores. Based on the number of cores requested by
the PBS job, a cpuset is created with the requested number of cores. Depending on
availability, PBS may not be able to allocate consecutive cores to a job.

Category: Process Pinning 5

http://www.nas.nasa.gov/hecc/support/kb/Sandy-Bridge-Processors_301.html
http://www.nas.nasa.gov/kb_upload/image/kb285_sandybridge_1030881.png

There are two cores per node (indicated with same color, below) on Columbia21, while
there are four cores per node on C22-24. In the following example, 8 consecutive cores
(cores 4-11) are allocated on Columbia21.

Four threads running on 8 cores of Columbia21 will get the following thread placement:

setting of KMP_AFFINITY Processor id 4 5 6 7 8 9 10 11
compact,verbose thread id 0 1 2 3
scatter,verbose thread id 0 1 2 3
"explicit,proclist=[5,7,9,11],verbose" thread id 0 1 2 3

Article ID: 285
Last updated: 14 Feb, 2013
Computing at NAS -> Best Practices -> Process Pinning -> Using Intel OpenMP Thread
Affinity for Pinning
http://www.nas.nasa.gov/hecc/support/kb/entry/285/?ajax=1

Category: Process Pinning 6

http://www.nas.nasa.gov/hecc/support/kb/entry/285/?ajax=1

	285.html

